Emotron DSV35 AC drive 3 ... 7.5 kW

Montage- und Einschaltung
Mounting and switch on instruction

Contents

1 General information 3
1.1 Read first, then start 3
1.2 Notations and conventions 3
1.2.1 Product code 3
2 Safety instructions - 4
2.1 Basic safety measures 4
2.2 Residual hazards 5
2.3 Application as directed 5
3 Product description 6
4 Mounting 7
4.1 Important notes 7
4.2 Mechanical installation 8
4.3 Electrical installation 10
4.3.1 3-phase mains connection 400 V 10
4.3.1.1 Fusing and terminal data 11
4.3.2 3-phase mains connection 480 V 12
4.3.2.1 Fusing and terminal data 13
4.3.3 Connection to the IT system 14
4.3.4 CANopen 15
4.3.5 Modbus 16
4.3.6 PROFIBUS 17
4.3.7 EtherCAT 18
4.3.8 EtherNet/IP 19
4.3.9 PROFINET 20
4.3.10 Connection of the safety module 21
4.3.10.1 Important notes 21
4.3.10.2 Connection plan 22
4.3.10.3 Terminal data 22
5 Commissioning 23
5.1 Important notes 23
5.2 Before initial switch-on 23
5.3 Initial switch-on / functional test with terminal control 24
6 Technical data 26
6.1 Standards and operating conditions 26
6.2 3-phase mains connection 400 V 28
6.2.1 Rated data 29
6.3 3-phase mains connection 480 V 30
6.3.1 Rated data 31

1 General information

1.1 Read first, then start

\triangle WARNING!

Read this documentation thoroughly before carrying out the installation and commissioning.

- Please observe the safety instructions!

Information and tools with regard to the Emotron products can be found on the Internet:
Http://www.emotron.com/file-archive

1.2 Notations and conventions

1.2.1 Product code Emotron, examples:

DSV35-40-7P3-20
DSV35-40-016-20

DSV	35	40	$7 P 3$	20
Series	3 -phase	400 V	Rated current 7.3A	IP20
DSV	35	40	016	20
Series	3 -phase	400 V	Rated current 16A	IP20

2 Safety instructions

2.1 Basic safety measures

Disregarding the following basic safety measures may lead to severe personal injury and damage to material assets!

The product

- must only be used as directed.
- must never be commissioned if they display signs of damage.
- must never be technically modified.
- must never be commissioned if they are not fully mounted.
- must never be operated without required covers.

Connect/disconnect all pluggable terminals only in deenergised condition.
Only remove the product from the installation in the deenergisedstate.
Insulation resistance tests between 24 V control potential and PE: According to EN 61800-5-1, the maximum test voltage must not exceed 110 VDC.
Observe all specifications of the corresponding documentation supplied. This is the precondition for safe and trouble-free operation and for obtaining the product features specified.
The procedural notes and circuit details described in this document are only proposals. It is up to the user to check whether they can be adapted to the particular applications. Emotron does not take any responsibility for the suitability of the procedures and circuit proposals described.
The product must only be used by qualified personnel. IEC 60364 or CENELEC HD 384 define the skills of these persons:

- They are familiar with installing, mounting, commissioning, and operating the product.
- They have the corresponding qualifications for their work.
- They know and can apply all regulations for the prevention of accidents, directives, and laws applicable at the place of use.

Observe the specific notes in the other chapters!

2.2 Residual hazards

The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system.
If the above is disregarded, this can lead to severe injuries to persons and damage to material assets!

Product

Observe the warning labels on the product!

Icon	Description
Before working on the inverter, the staff must ensure to be free of electrostatic charge!	
Before working on the inverter, check whether all power connections are dead! After mains OFF, power con-	
nections X100 and X105 carry a dangerous electrical voltage for the time specified on the inverter!	

Motor
If there is a short circuit of two power transistors, a residual movement of up to $180^{\circ} /$ number of pole pairs can occur at the motor! (For 4-pole motor: residual movement max. $180^{\circ} / 2=90^{\circ}$).
This residual movement must be taken into consideration by the user for his/her risk assessment.

2.3 Application as directed

- The product must only be operated under the operating conditions prescribed in this documentation.
- The product meets the protection requirements of 2014/35/EU: Low-Voltage Directive.
- The product is not a machine in terms of 2006/42/EC: Machinery Directive.
- Commissioning or starting the operation as directed of a machine with the product is not permitted until it has been ensured that the machine meets the regulations of the EC Directive 2006/42/EC: Machinery Directive; observe EN 60204-1.
- Commissioning or starting the operation as directed is only allowed when there is compliance with the EMC Directive 2014/30/EU.
- The harmonised standard EN 61800-5-1 is used for the inverters.
- The product is not a household appliance, but is only designed as component for commercial orprofessional use in terms of EN 61000-3-2.
- In accordance with EN 61800-3, the product can be used in drive systems that have to comply with the categories given in the technical data. In residential areas, the product may cause EMC interferences. The operator is responsible for taking interference suppression measures.

3 Product description

4 Mounting

4.1 Important notes

\. DANGER!

Dangerous electrical voltage
Possible consequence: death or severe injuries

- All works on the inverter must only be carried out in the deenergised state.
- After switching off the mains voltage, wait for at least 3 minutes before you start working.

4.2 Mechanical installation

Dimensions 3 kW ... 5,5 kW

All Dimensions in mm

Dimensions 7,5 kW

8800296

All Dimensions in mm

4.3 Electrical installation

4.3.1 3-phase mains connection 400 V

Wiring diagram.

Fig. 1: Wiring example

S1 Run/Stop
Fx Fuses

Q1 Mains contactor
--- Dashed line = options

4.3.1.1 Fusing and terminal data

Inverter		DSV35407P3	DSV35409P5	DSV3540013	DSV3540016
Cable installation in compliance with		EN 60204-1			
Laying system		B2			
Operation		without mains choke			
Fuse					
Characteristic		gG/gL or gRL			
Max. rated current	A	25	25	25	32
Circuit breaker					
Characteristic		B			
Max. rated current	A	25	25	25	32
Operation		with mains choke			
Fuse					
Characteristic		gG/gL or gRL			
Max. rated current	A	25	25	25	32
Circuit breaker					
Characteristic		B			
Max. rated current	A	25	25	25	32
Earth-leakage circuit breaker		$\geq 300 \mathrm{~mA}$, type B			
Mains connection					
Connection		X100			
Connection type		Screw terminal			
Min. cable cross-section	mm ${ }^{2}$	1.5			
Max. cable cross-section	mm^{2}	6		16	
Stripping length	mm	9		11	
Tightening torque	Nm	0.5		1.2	
Required tool		0.6×3.5		0.8×4.0	
Motor connection					
Connection		X105			
Connection type		Screw terminal			
Min. cable cross-section	mm^{2}	1.5			
Max. cable cross-section	mm^{2}	6		16	
Stripping length	mm	9		11	
Tightening torque	Nm	0.5		1.2	
Required tool		0.6×3.5		0.8×4.0	
PE connection					
Connection		PE			
Connection type		PE screw			
Min. cable cross-section	mm^{2}	1.5			
Max. cable cross-section	mm^{2}	6		16	
Stripping length	mm	10		11	
Tightening torque	Nm	1.2		3.4	
Required tool		0.8×5.5		PZ2	

4.3.2 3-phase mains connection 480 V

The wiring diagram is valid for $15 \times A E x x x F$ inverters.

Fig. 2: Wiring example

S1 Run/Stop
Fx Fuses

Q1 Mains contactor
--- Dashed line = options
4.3.2.1 Fusing and terminal data

Inverter		DSV35407P3	DSV35409P5	DSV3540013	DSV3540016
Cable installation in compliance with		EN 60204-1			
Laying system		B2			
Operation		without mains choke			
Fuse					
Characteristic		gG/gL or gRL			
Max. rated current	A	25	25	25	32
Circuit breaker					
Characteristic		B			
Max. rated current	A	25	25	25	32
Operation		with mains choke			
Fuse					
Characteristic		gG/gL or gRL			
Max. rated current	A	25	25	25	32
Circuit breaker					
Characteristic		B			
Max. rated current	A	25	25	25	32
Earth-leakage circuit breaker		$\geq 300 \mathrm{~mA}$, type B			
Mains connection					
Connection		X100			
Connection type		Screw terminal			
Min. cable cross-section	mm^{2}	1.5			
Max. cable cross-section	mm^{2}	6		16	
Stripping length	mm	9		11	
Tightening torque	Nm	0.5		1.2	
Required tool		0.6×3.5		0.8×4.0	
Motor connection					
Connection		X105			
Connection type		Screw terminal			
Min. cable cross-section	mm^{2}	1.5			
Max. cable cross-section	mm^{2}	6		16	
Stripping length	mm	9		11	
Tightening torque	Nm	0.5		1.2	
Required tool		0.6×3.5		0.8×4.0	
PE connection					
Connection		PE			
Connection type		PE screw			
Min. cable cross-section	mm^{2}	1.5			
Max. cable cross-section	mm^{2}	6		16	
Stripping length	mm	10		11	
Tightening torque	Nm	1.2		3.4	
Required tool		0.8×5.5		PZ2	

4.3.3 Connection to the IT system

i NOTICE!

Internal components have earth/ground potential if the IT screws are not removed.
Consequence: the monitoring functions of the IT system respond.

- Before connection to an IT system be absolutely sure to remove the IT screws.

4.3.4 CANopen

Typical topologies

Terminal description		CANopen
Connection		$\mathrm{X216}$
Connection type		Spring terminal
Min. cable cross-section	mm^{2}	0.5
Max. cable cross-section	mm^{2}	2.5
Stripping length	mm	10
Tightening torque	Nm	-
Required tool		0.4×2.5

Basic network settings

Use the DIP switch to set the node address and baud rate and to activate the integrated bus terminating resistor.

Bus termination	Baud rate					CAN node address						
R	d	c	b	a		64	32	16	8	4	2	1
OFF	OFF	ON	OFF	ON	20 kbps	OFF						
Inactive	OFF	OFF	ON	ON	50 kbps	Value from parameter						
ON	OFF	OFF	ON	OFF	125 kbps	Node address - example:						
Active	OFF	OFF	OFF	ON	250 kbps	OFF	OFF	ON	OFF	ON	ON	ON
	OFF	OFF	OFF	OFF	Value from parameter (500 kbps)	Node address $=16+4+2+1=23$						
	OFF	ON	OFF	OFF	1 Mbps							
	All other combinations				Value from parameter (500 kbps)							

Printed in bold =Factorysetting
The network must be terminated with a 120Ω resistor at the physically first and last node.
Set the "R" switch to ON at these nodes.

4.3.5 Modbus

Typical topologies

Terminal description		Modbus
Connection		X216
Connection type		Spring terminal
Min. cable cross-section	mm^{2}	0.5
Max. cable cross-section	mm^{2}	2.5
Stripping length	mm	10
Tightening torque	Nm	-
Required tool		0.4×2.5

Basic network settings

Use the DIP switch to set the node address and baud rate and to activate the integrated bus terminating resistor.

Bus termination		Baud rate	Parity	Modbus node address							
R	c	b	a	128	64	32	16	8	4	2	1
OFF	n.c.	OFF									
Inactive		Automatic detection	Automatic detection	Value from parameter							
ON		ON	ON	Node address - example:							
Active		Value from parameter	Value from parameter	OFF	OFF	OFF	ON	OFF	ON	ON	ON
				Node address $=16+4+2+1=23$ Node address > 247: value from parameter							

Printed in bold = Factory setting
The network must be terminated with a 120Ω resistor at the physically first and last node.
Set the "R" switch to ON at these nodes.

4.3.6 PROFIBUS

Typical topologies

Sub D socket 9-pin - X226

View	Pin	Assignment	Description
	1	Shield	Additional shield connection
	2	n.c.	
	3	RxD/TxD-P	Data line-B (received data/transmitted data+)
	4	RTS	Request To Send (received data/transmitted data, no differential signal)
	5	M5V2	Reference potential (bus terminating resistor-)
	6	P5V2	5 V DC / 30 mA (bus terminating resistor +, OLM, OLP)
	7	n.c.	
	8	RxD/TxD-N	Data line-A (received data/transmitted data-)
	9	n.c.	

Basic network settings

Use the DIP switch to set the station address.
The baud rate is detected automatically.

Printed in bold = Factory setting
i
The network must be terminated with a resistor at the physically first and last node.
Activate the bus terminating resistor at these nodes in the bus connection plug.

4.3.7 EtherCAT

Typical topologies

M	Master
SD	Slave Device

Bus-related information			
EtherCAT			
Come		Ethernet 100 Mbps, full duplex	
Use		Connection of the inverter to an EtherCAT network	
Connection system		RJ45	
Status display		2 LEDs	
Connection designation		In: X246 Out: X247	

Basic network settings

The rotary encoder switch allows you to set an EtherCAT identifier.

$\times 16$	
Setting	Identifier
0x00	Value from parameter
0x01 ... OxFF	Switch position

4.3.8 EtherNet/I

P Typical topologies

$\begin{array}{ll}\text { S } & \text { Scanner } \\ \text { A } & \text { Adapter }\end{array}$

Bus-related information			
EtherNet/IP			
Name		Ethernet $10 \mathrm{Mbps}, 100 \mathrm{Mbps}$, half duplex, full duplex	
Communication medium		Connection of the inverter to an EtherNet/IP network	
Use		RJ45	
Connection system		2 LEDs	
Status display		X266, X267	
Connection designation			

Basic network settings

The rotary encoder switch allows you to set the last byte of the IP address.

x 16 x 1	
Setting	Value of last byte
0x00	Value from parameter
0x01 ... 0xFE	Switch position
OxFF	Default setting

4.3.9 PROFINET

Typical topologies

Bus-related information			
Prome		Ethernet 100 Mbps, full duplex	
Communication medium		Connection of the inverter to a PROFINET network	
Use		RJ45	
Connection system		2 LEDs	
Status display		X256, X257	
Connection designation			

The rotary encoder switch has no function.

4.3.10 Connection of the safety module

4.3.10.1 Important notes

\. DANGER!

Improper installation of the safety engineering system can cause an uncontrolled starting action of the drives.
Possible consequences: Death or severe injuries

- Safety engineering systems may only be installed and commissioned by qualified and skilled personnel.
- All control components (switches, relays, PLC, ...) and the control cabinet must comply with the requirements of the EN ISO 13849-1 and the EN ISO 13849-2.
- Switches, relays with at least IP54 enclosure.
- Control cabinet with at least IP54 enclosure.
- It is essential to use insulated wire end ferrules for wiring.
- All safety relevant cables outside the control cabinet must be protected, e.g. by means of a cable duct
- Ensure that no short circuits can occur according to the specifications of the EN ISO13849-2.
- All further requirements and measures can be obtained from the EN ISO 13849-1 and the EN ISO 13849-2.
- If an external force acts upon the drive axes, additional brakes are required. Please observe that hanging loads are subject to the force ofgravity!
- The user has to ensure that the inverter will only be used in its intended application within the specified environmental conditions. This is the only way to comply with the declared safety-relatedcharacteristics.

4. DANGER!

With the "Safe torque off" (STO) function, no "emergency stop" in terms -EN 60204-1 can be executed without additional measures. There is no isolation between the motor and inverter, no service switch or maintenance switch!
Possible consequence: death or severe injuries

- "Emergency stop" requires electrical isolation, e.g. by a central mains contactor.

4. DANGER!

Automatic restart if the request of the safety function is deactivated.
Possible consequences: Death or severe injuries

- You must provide external measures according to EN ISO 13849-1 which ensure that the drive only restarts after a confirmation.

i NOTICE!

Overvoltage

Destruction of the safety component

- The maximum voltage (maximum rated) at the safety inputs is 32 VDC . The user must make provisions to avoid that this voltage is exceeded.

4.3.10.2 Connection plan

4.3.10.3 Terminal data

Terminal description		Safety STO
Connection		X 1
Connection type		Screw terminal
Min. cable cross-section	mm^{2}	0.5
Max. cable cross-section	mm^{2}	1.5
Stripping length	mm	6
Tightening torque	Nm	0.2
Required tool		0.4×2.5

X1	Specification	Unit	min.	typ.	max.
SIA, SIB	V	-3	0	+5	
	LOW signal	V	+15	+24	+30
	HIGH signal	ms		3	
	Running time	mA		10	14
	Input current SIA	mA		7	12
	Input current SIB	mA		100	
	Input peak current	ms			1
	Tolerated test pulse	ms		50	
	Switch-off time	ms	10		
	Permissible distance of the test pulses				

5 Commissioning

5.1 Important notes

〔 WARNING!

Incorrect settings during commissioning may cause unexpected and dangerous motor and system movements.
Possible consequence: death, severe injuries or damage to property

- Clear hazardous area.
- Observe safety instructions and safetyclearances.

5.2 Before initial switch-on

Prevent injury to persons and damage to property. Check the following before switching on the mains voltage:

- Is the wiring complete and correct?
- Are there no short circuits and earth faults?
- Is the motor circuit configuration (star/delta) adapted to the output voltage of the inverter?
- Is the motor connected in-phase (direction of rotation)?
- Does the "emergency stop" function of the entire plant operate correctly?

5.3 Initial switch-on / functional test with terminal control

Target: achieve rotation of the motor connected to the inverter as quickly as possible.
Requirements:

- The connected motor matches the inverter in terms of power.
- The parameter settings comply with the delivery status (Emotron setting).

1. Preparation:

1. Wiring of power terminals. (Chapter 4.3 Electrical installation)
2. Wire digital inputs X3/DI1 (start/stop), X3/DI3 (reversal of rotation direction), and X3/DI4 (preset frequency setpoint 20 Hz).
3. Do not connect terminal X3/AI1 (analog setpoint selection) or connect it to GND.

2. Switch on mains and check readiness for operation:

1. Switch on mains voltage.
2. Observe LED status displays "RDY" and "ERR" on the front of the inverter:
a) If the blue "RDY" LED is blinking and the red "ERR" LED is off, the inverter is ready for operation. The controller is inhibited.

You can now start the drive.
b) If the red "ERR" LED is lit permanently, a fault is pending.

Eliminate the fault before you carry on with the functional test.
LED status displays

"RDY" LED (blue)	"ERR" LED (red)	Status/meaning
off	off	No supply voltage.
blinking (1 Hz)	off	Safe torque off (STO) active.
	blinking fast (4 Hz)	Safe torque off (STO) active. Warning active.
blinking (2 Hz)	off	Inverter inhibited.
	lit every 1.5 s for a short time	Inverter inhibited, no DC-bus voltage.
	blinking fast (4 Hz)	Inverter inhibited, warning active.
	on	Inverter inhibited, fault active.
on	off	Inverter enabled. \quad The drive rotates according to the
	blinking fast (4 Hz)	Inverter enabled, warning active. ${ }^{\text {setpoint specified. }}$
	blinking (1 Hz)	Inverter enabled, quick stop as response to a faultactive.

Carrying out the functional test

1. Start drive:

1. Start inverter: X3/DI1 = HIGH.
a) If the inverter is equipped with an integrated safety system: $\mathrm{X} 1 / \mathrm{SIA}=\mathrm{HIGH}$ and $\mathrm{X} 1 / \mathrm{SIB}=\mathrm{HIGH}$.
2. Activate preset frequency setpoint $1(20 \mathrm{~Hz})$ as speed setpoint: X3/DI4 = HIGH.

The drive rotates with 20 Hz .
3. Optional: activate the function for the reversal of rotation direction.
a) $\mathrm{X} 3 / \mathrm{DI} 3=\mathrm{HIGH}$.

The drive rotates with 20 Hz in the opposite direction.
b) Deactivate the function for the reversal of rotation direction again: X3/DI3 = LOW. Speed characteristic (example)

2. Stop drive:

1. Deactivate preset frequency setpoint 1 again: X3/DI4 $=$ LOW.
2. Stop inverter again: X3/DI1 = LOW.

The functional test is completed.

i
The commissioning process of the drive solution is described in a separate commissioning instruction which can be found on the Internet in our download area:
http:// www.emotron.com/file-archive

6 Technical data

6.1 Standards and operating conditions

Conformities		
CE	2014/35/EU	Low-Voltage Directive
	2014/30/EU	EMC Directive (reference: CE-typical drive system)
EAC	TR TC 004/2011	Eurasian conformity: safety of low voltage equipment
	TP TC 020/2011	Eurasian conformity: electromagnetic compatibility of technical means
RoHS 2	2011/65/EU	Restrictions for the use of specific hazardous materials in electric and electronic devices
Approvals		
UL	UL 61800-5-1	for USA and Canada (requirements of the CSA 22.2 No. 274)
		0.25 kW ... 22 kW (30 kW ... 45 kW in preparation)
Energy efficiency		
Class IE2	EN 50598-2	Reference: Emotron setting (switching frequency 8 kHz variable)
Degree of protection		
IP20	EN 60529	
Type 1	NEMA 250	Protection against contact
Open type		only in UL-approved systems
Insulation resistance		
Overvoltage category III	EN 61800-5-1	0... 2000 m a.m.s.l.
Overvoltage category II		above 2000 m a.m.s.l.
Control circuit isolation		
Safe mains isolation by double/ reinforced insulation	EN 61800-5-1	
Protective measures against		
Short circuit		
Earth fault		Earth fault strength depends on the operatingstatus
Overvoltage		
Motor stalling		
Motor overtemperature		PTC or thermal contact, $I^{2} \times$ x monitoring
Leakage current		
> $3.5 \mathrm{~mA} \mathrm{AC},>10 \mathrm{~mA} \mathrm{DC}$	EN 61800-5-1	Observe regulations and safety instructions!
Mains switching		
3 -time mains switching in 1 min		Cyclic, without any restrictions
Starting current		
$\leq 3 \times$ rated mains current		
Mains systems		
TT		Voltage to earth/ground: max. 300V
TN		
IT		Apply the measures described for IT systems!
		IT systems are not relevant for UL-approved systems
Operation on public supply systems		
Implement measures to limit the radio interference to be expected:		The machine or plant manufacturer is responsible for compliance with the requirements for the machine/ plant!
<1 kW: with mains choke	EN 61000-3-2	
$>1 \mathrm{~kW}$ at mains current $\leq 16 \mathrm{~A}$: without additional measures		

Mains current > 16 A: with mains choke or mains filter, with dimensioning for rated power. Rsce \geq 120 is to be met.	EN 61000-3-12	RSCE: short-circuit power ratio at the connection point of the machine/plant to the public network.
Requirements to the shielded motor cable		
Capacitance per unit length		
$\begin{aligned} & \text { C-core-core/C-core-shield < 75/150 } \\ & \mathrm{pF} / \mathrm{m} \end{aligned}$		$\leq 2.5 \mathrm{~mm}^{2} /$ AWG 14
```C-core-core/C-core-shield < 150/300 pF/m```		$\geq 4 \mathrm{~mm}^{2} /$ AWG 12
Electric strength		
$\mathrm{Uo} / \mathrm{U}=0.6 / 1.0 \mathrm{kV}$		Uo = r.m.s. value external conductor to PE
	UL	$\mathrm{U}=$ r.m.s. value external conductor/external conductor
Climate		
$1 \mathrm{~K} 3\left(-25 \ldots+60^{\circ} \mathrm{C}\right)$	EN 60721-3-1	Storage
$2 \mathrm{~K} 3\left(-25 \ldots+70^{\circ} \mathrm{C}\right)$	EN 60721-3-2	Transport
$3 \mathrm{~K} 3\left(-10 \ldots+55^{\circ} \mathrm{C}\right)$	EN 60721-3-3	Operation
		Operation at a switching frequency of 2 or 4 kHz : above $+45^{\circ} \mathrm{C}$, reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
		Operation at a switching frequency of 8 or 16 kHz : above $+40^{\circ} \mathrm{C}$, reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
Site altitude		
0 ... 1000 m a.m.s.l.		
1000 ... 4000 m a.m.s.l.		Reduce rated output current by $5 \% / 1000 \mathrm{~m}$
Pollution		
Degree of pollution 2	EN 61800-5-1	
Vibration resistance		
Transport		
2M2 (sine, shock)	EN 60721-3-2	
Operation		
Amplitude 1 mm	Germanischer Lloyd	$5 \ldots 13.2 \mathrm{~Hz}$
Acceleration resistant up to 0.7 g		13.2 ... 100 Hz
Amplitude 0.075 mm	EN 61800-5-1	$10 \ldots 57 \mathrm{~Hz}$
Acceleration resistant up to 1 g		$57 . . .150 \mathrm{~Hz}$
Noise emission		
Category C1	EN 61800-3	Type-dependent, for motor cable lengths see rated data
Category C2		
Noise immunity		
Meets requirement in compliance with	EN 61800-3	

### 6.2 3-phase mains connection 400 V

The output currents apply to these operating conditions:

- At a switching frequency of 2 kHz or 4 kHz : Max. ambient temperature $45^{\circ} \mathrm{C}$.
- At a switching frequency of 8 kHz or 16 kHz : Max. ambient temperature $40^{\circ} \mathrm{C}$.


### 6.2.1 Rated data

Inverter		DSV35407P3	DSV35409P5	DSV3540013	DSV3540016
Rated power	kW	3	4	5.5	7.5
Mains voltage range		3/PE AC 340 V ... $528 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$			
Rated mains current					
without mains choke	A	9.6	12.5	17.2	20
with mains choke	A	6.9	9	12.4	15.7
Output current					
2 kHz	A	7.3	9.5	13	16.5
4 kHz	A	7.3	9.5	13	16.5
8 kHz	A	7.3	9.5	13	16.5
16 kHz	A	4.9	6.3	8.7	11
Power loss	W	109	140	189	238
Overcurrent cycle 180 s					
Max. output current	A	11	14.3	19.5	24.8
Overload time	s	60	60	60	60
Recovery time	s	120	120	120	120
Max. output current during the recovery time	A	5.48	7.13	9.75	12.4
Overcurrent cycle 15 s					
Max. output current	A	14.6	19	26	33
Overload time	s	3	3	3	3
Recovery time	s	12	12	12	12
Max. output current during the recovery time	A	5.48	7.13	9.75	12.4
Brake chopper					
Max. output current	A	8.84	15.43	15.43	26.85
Min. brake resistance	$\Omega$	82	47	47	27
Motor cable length					
shielded, without EMC	m	50		100	
C2 residential area / industrial premises	m	20			
Weight	kg	2.3		3.7	

## 6 Technical data

3-phase mains connection 480 V
Rated data

### 6.3 3-phase mains connection 480 V

The output currents apply to these operating conditions:

- At a switching frequency of 2 kHz or 4 kHz : Max. ambient temperature $45^{\circ} \mathrm{C}$.
- At a switching frequency of 8 kHz or 16 kHz : Max. ambient temperature $40^{\circ} \mathrm{C}$.


### 6.3.1 Rated data

Inverter		DSV35407P3	DSV35409P5	DSV3540013	DSV3540016
Rated power	kW	3	4	5.5	7.5
Mains voltage range		3/PE AC 340 V ... $528 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$			
Rated mains current					
without mains choke	A	8	10.5	14.3	16.6
with mains choke	A	5.8	7.5	10.3	13.1
Output current					
2 kHz	A	6.3	8.2	11	14
4 kHz	A	6.3	8.2	11	14
8 kHz	A	6.3	8.2	11	14
16 kHz	A	4.2	5.5	7.3	9.3
Power loss	W	109	140	189	238
Overcurrent cycle 180 s					
Max. output current	A	9.45	12.3	16.5	21
Overload time	s	60	60	60	60
Recovery time	s	120	120	120	120
Max. output current during the recovery time	A	4.73	6.15	8.25	10.5
Overcurrent cycle 15 s					
Max. output current	A	12.6	16.4	22	28
Overload time	s	3	3	3	3
Recovery time	S	12	12	12	12
Max. output current during the recovery time	A	4.73	6.15	8.25	10.5
Brake chopper					
Max. output current	A	9.51	16.6	16.6	28.89
Min. brake resistance	$\Omega$	82	47	47	27
Motor cable length					
shielded, without EMC	m	50		100	
C2 residential area / industrial premises	m	20			
Weight	kg	2.3		3.7	

CG DRIVES \& AUTOMATION Mörsaregatan 12, Box 22225
SE- 25024 Helsingborg,
Sweden
+46 42169900
Info: info.se@cgglobal.com
Order: order.se@cgglobal.com

